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ABSTRACT
Purpose This work investigates improved utilization of ADAS-
cog data (the primary outcome in Alzheimer’s disease (AD) trials
of mild and moderate AD) by combining pharmacometric model-
ing and item response theory (IRT).
Methods A baseline IRT model characterizing the ADAS-cog was
built based on data from2,744 individuals. Pharmacometric methods
were used to extend the baseline IRT model to describe longitudinal
ADAS-cog scores from an 18-month clinical study with 322 patients.
Sensitivity of the ADAS-cog items in different patient populations as
well as the power to detect a drug effect in relation to total score
based methods were assessed with the IRT based model.
Results IRTanalysis was able to describe both total and item level
baseline ADAS-cog data. Longitudinal data were also well de-
scribed. Differences in the information content of the item level
components could be quantitatively characterized and ranked for
mild cognitively impairment and mild AD populations. Based on
clinical trial simulations with a theoretical drug effect, the IRT
method demonstrated a significantly higher power to detect drug
effect compared to the traditional method of analysis.
Conclusion A combined framework of IRTand pharmacometric
modeling permits a more effective and precise analysis than total
score based methods and therefore increases the value of ADAS-
cog data.

KEYWORDS ADAS-cog . Alzheimer’s disease . item response
theory . nonlinear mixed effect models . pharmacometrics

ABBREVIATIONS
3PL 3 parameter logit
AD Alzheimer’s disease
ADAS-cog Alzheimer’s disease

assessment scale—cognitive subscale
ADNI Alzheimer’s disease neuroimaging initiative
CAMD Coalition Against Major Diseases
C-Path Critical path institute
CTS Clinical trial simulations
GAM Generalized additive model
ICC Item characteristic curve
IRT Item response theory
LS Least-squares
MCI Mild cognitively impairment
SD Standard deviation
VPC Visual predictive check

INTRODUCTION

The Alzheimer’s Disease Assessment Scale—cognitive sub-
scale (ADAS-cog) has served as the de-facto standard for the
assessment of cognition in clinical trials in mild to moderate
Alzheimer’s Disease (AD) patients for the past 20 years (1).
However, recent failures of promising drug candidates devel-
oped for the treatment of AD, and a movement towards
earlier forms of the disease for future studies, have led some
to question the sensitivity of the ADAS-cog. The ADAS-cog
score has proven to be non-uniformly sensitive to measuring
cognitive decline in AD across mild to moderate patients and
has been recognized as less appropriate for earlier stages of the
disease (2). Recently, new cognitive tests, with a specific focus
on early AD, have been proposed (2). While likely providing
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more specificity, the disadvantages of continued introduction
of novel tests and the inflation of the numbers and types of
assessments are rarely considered. Fragmentation of cognitive
assessments into specific measures for specific stages of AD
reduces the comparability of study outcomes for things like
comparative effectiveness research, and diminishes the possi-
bility to acquire useful knowledge across the lifespan of an
individual patient, or across trials. As earlier AD populations
are studied, the trial duration must increase to studies of at
least 2 to 4 years duration; coupled with enrolment times and
open-label extension studies, future drug development pro-
grams can involve investigations as long as 8 years for a
patient. As trials increase in duration, or as trial populations
are enriched by biomarker or imaging criteria to select more
rapid progressors, the variability and sensitivity of a highly
specific cognitive assessment may increase if the newly added
items become non-sensitive (i.e., floor and/or ceiling effects).
There is also the risk of lower assessment completion rate,
improper application by raters due to lack of familiarity with
the test, and improper scoring for missing data due to the lack
of standardized scoring algorithms across organizations for the
new instrument.

An alternative to generating multiple cognitive tests that
target different individual short-period AD populations, is to
utilize subsets of one or more of the existing assessments that
are most sensitive in that population. Longitudinal patient
ADAS-cog score data contains an inherent temporal and
hierarchical structure, with various items within the ADAS-
cog having more or less sensitivity at various stages of the
disease. Utilizing a single assessment tool like the ADAS-cog,
and focusing only on the most sensitive sub scores allows
information from various studies to be easily combined, lever-
ages the large mass of existing data sources as a useful prior,
and provides a platform for following changes in cognition
over a wide range of disease severity. The question is how to
determine which subsets to use and when, and how scores
from various ADAS-cog variants can provide a continuous
description of change in disability over time.

Recent publications have demonstrated that an increase in
precision in the cognitive assessment is achievable through
application of the statistical framework of item response the-
ory (IRT) (3,4). IRT uses a hidden or latent variable approach
to describe the unobservable quantity an assessment aims to
measure (5). In this manuscript we focus on the ADAS-cog
and the interpretation of each task of the assessment as a
surrogate measure for the patient’s cognitive disability. The rela-
tionship between the outcome of the tasks and cognitive disability
is characterized through item characteristic curves (ICCs).
The shape of these curves expresses how informative each
question is in relation to the population being tested. Patients’
most likely cognitive disability can be estimated and compared on
a single scale irrespective of the test they took, as long as the
individual questions have been mapped to the overall cognitive

disability of the population. This aspect makes the IRT ap-
proach preferable for measuring cognition over a long period
of time with either one instrument, an instrument with multi-
ple variants (ADAS-cog 11, 13 etc.) or multiple measurement
instruments. Thus, IRT does not represent a novel cognitive
assessment but an approach capable of a better utilization of
existing data.

Another component of this work involves the application of
pharmacometric methodologies to describe the change in
cognitive disability over time. A combination of the advan-
tages of IRT with the statistical benefits and versatility of
pharmacometric models appear to be ideally suited to im-
prove the utilization of ADAS-cog assessment data and ad-
dress a number of the challenges described above.

This work investigates the four hypotheses in combining
pharmacometric modeling and IRT for the analysis of ADAS-
cog data. Specifically, a combined pharmacometric and IRT
approach is (i) suitable for describing the baseline cognitive
ability of Mild and moderate AD patients assessed with dif-
ferent ADAS-cog variants, (ii) increases the efficiency of future
trials by optimizing the most informative subset of cognitive
tests for a specific population, (iii) improves the description of
longitudinal changes in cognition data, like that from long
term clinical trials, and (iv) enhances the sensitivity to detect
changes in cognition.

MATERIALS AND METHODS

Assessment of Baseline Cognition from Multiple Data
Sources

An IRT model describing ADAS-cog assessment data was
developed from clinical trial databases.

Data

The data were taken from two major AD databases, the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) and
the Coalition Against Major Diseases (CAMD). The data
contained in the ADNI database1 (http://adni.loni.ucla.
edu/ database version as of December 2012) consisted of a
mild cognitively impairment (MCI) group, a mild AD group
and an elderly control group that were followed for 36months
(24 for the control group). The item level ADAS-cog assess-
ment data at baseline (first non-screening measurement at the

1 Data used in preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.ucla.edu). As such, the investigators within the ADNI contributed
to the design and implementation of ADNI and/or provided data but did
not participate in analysis or writing of this report. A complete listing of
ADNI investigators can be found at: http://adni.loni.ucla.edu/wp-content/
uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Improved Utilization of ADAS-Cog Data Through IRT Based Modeling 2153



beginning of the study) from all groups were used in this work.
The CAMD database (C-Path Online Data Repository) con-
tains, as of November 2012, the de-identified control arm data
from 20 clinical trials (http://www.c-path.org/camd.cfm).
Eight out of those 20 trials contained both total ADAS-cog
score and item level data. The baseline data from seven of
these eight studies were used to develop the IRT model, the
remaining study was kept for the longitudinal analysis (de-
scribed herein).

As a collection of various studies, these two databases
contain a number of different ADAS-cog assessment variants
differing in the number of components included in the assess-
ment. The original ADAS-cog assessment developed by
Rosen et al. (6) consists of 11 components: 6 task based
(“Commands”, “Construction”, “Ideational Praxis”,
“Naming Object & Fingers”, “Orientation”, “Word Recall”
and “Word Recognit ion” ) and 4 rater asses sed
(“Comprehension”, “Spoken Language”, “Remembering”
and “Word Finding”). A Common modification to the origi-
nal ADAS-cog 11 is the addition of the components “Delayed
Word Recall” and “Number Cancellation” as described by
Mohs et al. (7). Overall, baseline ADAS-cog assessment data
from 2,744 patients were used resulting in more than 120,000
individual data items. Table I lists the individual studies used
in the analysis and their contribution in number of subjects as
well as in terms of test components. The “Word Recognition”
component for three studies had to be excluded from the
analysis as results were stored only as recalled/not-recalled
and not as correct/incorrect.

Model

The IRT model described the response for each of the test
items of the ADAS-cog as a function of the patients underlying

cognitive disability. In the following section aj, bj, cj, dj denote test
specific parameters of test j and Di refers to the unobserved
cognitive disability of subject i.

Most ADAS-cog test items consist of a number of
tasks that the subject is asked to perform and whether
the patient succeeded or not. These tests with two
potential outcomes were modeled using a binary model
(8), describing the probability to fail (pij) as function of
cognitive disability using a three-parameter model, com-
monly referred to as a 3PL (3 parameter logit) in IRT
publications. The utilized 3PL model had the form

pij ¼ c j þ 1−c j
� � ea j Di−b jð Þ

1þ ea j Di−b jð Þ ð1Þ

In this parameterization the three test item specific
parameters are: aj—the slope or discrimination parame-
ter, bj—the item location or difficulty parameter and
cj—the probability for a subject with no cognitive im-
pairment to fail.

For word based tests of the ADAS-cog assessment,
“(Delayed) Word Recall” and “Word Recognition”, it
was assumed that the ICCs do not differ between words. The
resulting count of incorrectly recalled/recognized words
(k) out of n given words, was described using the bino-
mial model (9)

P Y ij ¼ k
� � ¼ n

k

� �
pkij 1−pij
� �n−k

ð2Þ

where n
k

� �
denotes the binomial coefficient. For the word

recall tests (3 repetitions of the word recall test and the delayed
word recall test), the failure probability pij was modeled using
Eq. (1). For the “WordRecognition” test, Eq. (1) was extended
to

pij ¼ c j þ d j−c j
� � ea j Di−b jð Þ

1þ ea j Di−b jð Þ ð3Þ

where the additional parameter dj describes the maximal
probability for a severely cognitively impaired person to in-
correctly categorize the words as previously seen or not. Due
to slight differences in the implementation of the test as well as
in the method of storing test results, some study specific
modifications were incorporated in the word recognition test
model. For CAMD studies 1141 and 1142 the binomial
distribution was truncated at a count of 12 and for CAMD
studies 1137 and 1138 separate difficulty and discrimination
parameters were estimated to account for the 3-fold repetition
of the test.

Table I Characteristics of Studies Used in the Development of the Baseline
IRT Model. The Numbers for CAMD Studies are Unique Study Identifiers in
the CAMD Database

Study Subjects Additionala Excludedb

ADNI 819 DWR, NC –

CAMD 1131 57 DWR NOF, WRC

CAMD 1132 412 DWR WRC

CAMD 1137 216 – –

CAMD 1138 202 – –

CAMD 1140 137 DWR NOF, WRC

CAMD 1141 492 DWR, NC –

CAMD 1142 409 DWR, NC –

a Components with item level data in addition to ADAS-cog 11 (DWR delayed
word recall, NC number cancellation)
b Available in the data but not analyzed (NOF naming objects & fingers,WRC
word recognition)
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For the “Number Cancellation” component a generalized
Poisson model (10) was used to describe the data:

P Y ij ¼ k
� � ¼ p Dið Þ p Dið Þ þ δkð Þk−1e−p Dið Þ−δk

k!P Y ij > 40
� � ð4Þ

p Dið Þ ¼ d j 1−
ea j Di−b jð Þ

1þ ea j Di−b jð Þ

 !
ð5Þ

where aj, bj, dj have a similar interpretation as above and δ is a
dispersion parameter allowing for over- or underdispersion in
the data. The factor P(Yij>40) in Eq. (5) ensures that all scores
predicted by the equation are in the range 0–40.

The remaining components are examiner rated, categorize
a subject in one of five categories (no impairment to severe
impairment) and were modeled using a proportional odds,
ordered categorical model (11). The probability that a patient
received a rating of at least k was described using the function

P Y ij ≥k
� � ¼ ea j Di−b j;kð Þ

1þ ea j Di−b j;kð Þ ð6Þ

Similar to the 3PL model, aj is the slope and bj,k is the
difficulty parameter. The latter was constrained to be non-
decreasing for higher scores of the same test (i.e., bj,k+1≥bj,k).
The probability of obtaining exactly the score k was then
calculated by subtracting the probability to obtain at least
k+1 from the probability of obtaining at least k (P(Yij=k)=
P(Yij>=k)−P(Yij>=k+1).

The variable Di was modeled as a subject specific random
effect following a normal distribution with a mean of zero and
a variance of 1. Note that the assumed scale of cognitive disability
goes from −∞ to + ∞. This scale is arbitrary and the theory
does not preclude the use of other scales or assumed
distributions.

Estimation and Validation

Implementation and parameter estimation of the model spec-
ified above was performed in NON-linear Mixed Effect
Model software (NONMEM) version 7.3 beta (12)
(NONMEM code is available upon request). All 169 test
specific parameters were jointly estimated using the second-
order conditional estimation method (Laplacian).

For each test item, the model fit was evaluated by graph-
ically comparing the estimated ICC to the fit of a generalized
additivemodel (GAM) using a cross-validated cubic spline as a
smoothing function (13). This comparison was carried out for
the pooled data as well as on a per study basis in order to
identify study specific deviations. Furthermore, the final mod-
el was evaluated through simulation based diagnostics by
using the ICC and the individual cognitive disability estimates

to simulate responses (100 replicates) and subsequently com-
pare them with the observations.

Increasing Trial Efficiency by Selection of a Sensitive
Subtest

The Fisher information of each assessment item was calculat-
ed and, using optimal design theory the most informative test
components were determined in two patient populations.

Fisher Information for Cognitive Disability

The primary quantity of interest in this work was a patient’s
cognition, captured as cognitive disability in Eqs. 1–6 above.
From those equations the Fisher information for cognitive
disability was calculated as minus the expectation of the second
derivative of the log-likelihood. For the four different models
used in this work (binary, binomial, Poisson and ordered
categorical), this could be done analytically due to the special
structure of the equations (i.e., the only random effect in the
equation is cognitive disability). The resulting information func-
tions were visualized to illustrate the sensitivity of each assess-
ment item over the full cognitive disability range.

Population Specific Information

The Fisher information functions also served as a basis to
calculate the average information of each assessment compo-
nent in a MCI and a mild AD patient population. Firstly,
mean and standard deviation for cognitive disability in the MCI
and mild AD cohort of the ADNI study were estimated using
the model described herein. Secondly, using the two disability
distributions and assuming normality the average information
for each ADAS-cog assessment item was calculated. Thirdly,
average item information for all items in one component was
added to yield average component information. Finally, as-
sessment components were ranked based on their average
information content.

Application of IRT to Describe Longitudinal Changes
in Cognition

An example dataset with data from a phase III trial was used
to investigate the extension of the IRT based framework to
longitudinal data.

Data

The data used to describe longitudinal changes in cognitive
disability were collected from a double-blind, placebo con-
trolled phase III trial to evaluate atorvastatin (Lipitor®) effect
inmild tomoderate AD patients who were on stable donepezil
(Aricept®) background therapy (LEADe study) (14,15). The
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study duration was 80 weeks including a withdrawal phase of
8 weeks.

This analysis included all ADAS-cog 11 assessment data
from the placebo arm (placebo + donepezil) during a double-
blind treatment period and the withdrawal phase. The study
included a total of eight scheduled ADAS-cog assessments, at
0, 3, 6, 9, 12, 15, 18 and 20 month. Overall, the dataset
consisted of 322 patients contributing 98,439 item level
observations.

The LEADe study is available in the CAMD database but
was excluded when building the baseline model, to emulate
the analysis of future studies.

Model

Test specific parameters in the baseline IRTmodel were fixed
to the previously estimated baseline values and deterioration
as a consequence of disease progression was implemented on
the hidden variable. The specific implementation of the dis-
ease progression model on the hidden variable (Di) scale
followed the model evaluated by Ito et al. (16). Total change
during the study was assumed to be of small magnitude,
justifying the following linear expression

Di tð Þ ¼ D0
i þ ai⋅t ð7Þ

Both the baseline Di
0 and slope parameter ai were assumed

to be subject-specific and modeled through random effects
(Di

0=θ1+ηi1 and ai=θ2+ηi2 ), which were allowed to be
correlated.

A dropout model for interval censored data (17) was im-
plemented, describing the probability of a subject to remain in
the study beyond a certain time. During the analysis, four
different hazard functions (h(x,t)) were tested: constant hazard
(logh(x,t)=θ3), cognitive disability dependent hazard (log
h(x,t)=θ3+θ4⋅Di(t)), progression rate dependent hazard (log
h(x,t)=θ3+θ4⋅ai) and baseline disability dependent hazard
(logh(x,t)=θ3+θ4⋅Di

0). The hazard function describing the
data best, was chosen using the log-likelihood ratio test with
a 5% significance level.

Estimation and Validation

The longitudinal IRTmodel was implemented inNONMEM
7.3 beta (12) and all parameters were estimated from the data
using the Laplacian estimation method (NONMEM code is
available upon request).

The adequacy of this model to describe clinical trial data
was tested by comparing model predicted baseline ADAS-cog
scores and annual rates of change to those values reported
independently for the study (14). Furthermore, observed and
predicted data were compared through visual predictive

checks (VPCs) both on the aggregate ADAS-cog score level
and on the individual item level. For the item level, 200
Monte-Carlo simulations from the final model and original
study design were obtained and the proportion of patients in
the observed data with a certain test outcome were compared
to the 95% prediction interval of the simulated data. Similarly
for the aggregate level, 200 datasets from the final IRT model
were simulated, the ADAS-cog score calculated and the 95%
confidence interval for the median, the 2.5th and 97.5th
percentile from the simulated scores were compared to the
corresponding observed percentiles. Additionally, observed
and predicted dropout patterns were compared.

Increasing Drug Effect Detection Power

Clinical trial simulations (CTSs) were used to compare the
power to detect a drug effect for three different data analysis
methods: (1) least-squares (LS) mean analysis, (2) analysis using
a longitudinal pharmacometric model for the total ADAS-cog
score and (3) analysis using the longitudinal IRT model.

Clinical Trial Simulations

The CTSs were performed under the scenario of a hypothet-
ical phase III trial in mild to moderate AD patients for a
disease modifying agent. The trial duration was set to
20 months with a balanced parallel-arm study design (placebo
and treatment) and seven ADAS-cog assessments per subject
(0, 3, 6, 9, 12, 15 and 18 month). Study sizes of 100, 200, 400
and 800 subjects in total were investigated in the simulations
(for the LS-means analysis also 1,200 subjects). The longitu-
dinal IRT model described herein with the parameter values
estimated from the longitudinal data was used as the simula-
tion model. A hypothetical drug effect was introduced as a
20% lower subject-specific disease progression rate in the
treatment group (i.e. ai=(1–0.2⋅xGrp)⋅ (θ2+ηi2), xGrp=0 in the
placebo and xGrp=1 in the treatment group). For simplicity, it
was assumed that patients did not drop out from the study.
For each sample size, 500 clinical trials under the outlined trial
design were simulated and subsequently analyzed with the
three data analysis models described below. Finally, all power
curves (power to detect a drug effect versus number of individ-
uals) were compared graphically.

In addition to the power assessment, the type I error under
each sample size and for all three analysis methods was inves-
tigated. For this assessment simulations were carried out as
described in the preceding paragraph with the drug effect set
to zero.

Least-Square Mean Analysis

The LS means analysis tested for a statistical significant
change in total ADAS-cog score from placebo at 20 months.
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The model used for the least-square mean analysis was based
on change from baseline score as the dependent variable,
treatment as the major factor, visit as the repeated factor,
and baseline score as a covariate. Furthermore, a treatment-
by-visit interaction term was included in the model and sub-
jects nested within treatment served as the grouping factor. A
drug effect was considered significant if the 95% confidence
interval for the estimated mean group difference did not
include the null value (Wald hypothesis test at 5% signifi-
cance). The LS means analysis was performed in R (version
2.15.2) (18) using the “nlme” package (version 3.1-105) (19).

Pharmacometric Total ADAS-Cog Score Analysis

A pharmacometric model was built from a dataset with 400
individuals simulated from the data-generating model. The
linear disease progression model described by Ito et al. (16)was
used as a starting model and modified in a stepwise manner.
In this process, the value of each modification was evaluated
through goodness of fit plots, residual plots and VPCs. The
final model obtained in this manner was refit to additional
simulations for 100, 200 and 800 subjects and assessed for its
ability to describe general simulations from the longitudinal
IRT model. During the CTSs, the model was fitted to each
dataset and a drug effect was considered significant if the 95%
confidence interval of the drug effect parameter did not in-
clude 0 (Wald hypothesis test at 5% significance).

Pharmacometric IRT Analysis

The longitudinal IRT model with drug effect, which also
served as the simulation model, was fit to all datasets.
Similar to the total ADAS-cog score analysis, the exclusion
of 0 from the 95% drug effect confidence interval was used a
significance criterion (Wald hypothesis test at 5%
significance).

Both pharmacometric analyses (total ADAS-cog and IRT)
were performed using NONMEM 7.3 beta (12).

RESULTS

Assessment of Baseline Cognition from Multiple Data
Sources

All test-specific parameters in the model were successfully
estimated using data from all eight studies (final estimates
can be found in online Supplementary Material A).
Uncertainty information could not be obtained as the covari-
ance step did not complete and runtimes prohibited the use of
the bootstrap procedure. Figures 1 and 2 exemplify the good-
ness of fit and simulation diagnostics performed for all test
items and all studies (the remaining diagnostics are available

in the online Supplementary Material B). In addition to
qualifying the chosen probabilistic model, these diagnostic
plots also underline the validity of the different models across
studies and allow identification of studies with deviating
disability-response relationship. The validity of the normality
assumption for cognitive disability was evaluated graphically.

The ICCs for the 13 cognitive test components of the
ADAS-cog assessment are shown in Fig. 3. For the binary
response components (top row), all curves portray the charac-
teristic S-shape in the range of −4 to 4, with a low failure
probability for low scores and high failure probability for
higher scores. The construction component (top row, second
column) is illustrative for understanding the individual ICCs.
While the task “Draw a Circle” (green) can even be performed
by patients with large disability, the “Draw a Cube” task (pink)
represents a challenge for even 20% of healthy elderly sub-
jects. It is important to note that a non-zero intercept can be
caused by a number of different reasons unrelated to cogni-
tion, i.e., the probability to fail might not depend exclusively
on cognitive disability but also on other non-considered factors.
For example, the non-zero intercept for the task “tap shoul-
der” could be due to a certain percentage of elderly people
with a restricted range of motion. Noteworthy are the ICCs
for the three repetitions of the “Word Recall” test. While
healthy individuals improve by the second repetition, patients
with high cognitive disability value show little change between
repetitions.

The panels for the ordered categorical type of response
show the probability of a certain classification as a function of
cognitive disability. It is apparent here that Category 0 is the most
frequently assigned category in all components. The figure
also illustrates that there is considerable overlap between
categories, indicating that patients with a specific cognitive
disability value can be assigned to different categories with
similar probability.

Increasing Trial Efficiency by Selection of a Sensitive
Subtest

Figure 4 depicts the Fisher information of the different ADAS-
cog items as a function of cognitive disability. A task with a higher
information value will determine a subject’s cognitive disability
more precisely. For reference, the 95% prediction intervals of
cognitive disability in the MCI and in the mild AD population
as estimated from the ADNI database are also shown in Fig. 4
(group information is not used in the calculation). The infor-
mation curves clearly differ both in amplitude as well as in
location of the maxima. Most items have their information
peak to the right of the 95% cognitive disability intervals, indicat-
ing a higher sensitivity for patients more severely impaired than
those studied in the ADNI study. An exception is the “Delayed
Word Recall” test, which has particularly high amplitude and is
most informative for relatively low disabilities. Remarkable is
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also the particularly low information content for the rater
assessed items in the bottom row of Fig. 4.

A quantitative evaluation of the information content for
each item can be obtained by calculating the expected infor-
mation for the MCI and the mild AD patient populations
(Table II). The total information, i.e., the sum over all com-
ponents, is 25% higher in the mild AD patient population
than in the MCI population. Also ranking the individual
components by their contribution yields considerably different
results. For the MCI population, about 90% of the informa-
tion is contained in six components: “Delayed Word Recall”,
“Word Recall”, “Orientation”, “Word Recognition”,

“Naming Objects & Fingers” and “Number Cancellation”.
For the mild AD population, information is more evenly
distributed between components. While the “Delayed Word
Recall” component carries most information in the MCI
population, it is only ranked 3rd for mild AD patients and its
information content dropped from 4.8 to 3.3. The
“Orientation” component, in contrast, has much higher in-
formation content in a mild AD population (5.01) than in a
MCI population (2.02). These differences are remarkable
considering that the two populations have significant overlap
(see shaded area in Fig. 5).

Application of IRT to Describe Longitudinal Changes
in Cognition

For the typical individual in the LEADe study the final longi-
tudinal IRT model describes a linear increase in cognitive
disability from a baseline value of 0.95 and at a rate of 0.35
per year. Individual cognitive disability trajectories vary accord-
ing to an additive inter-subject variability model with variabil-
ity estimates of 0.68 standard deviations (SD) for the baseline
and 0.39 SD for the progression rate. Subjects with a higher
baseline disability are more likely to progress faster due to a
correlation of 0.54 between the baseline and progression
random effects. The temporal variations in cognitive disability
drive the changes in item responses and consequentially in
ADAS-cog score through the time-constant ICCs that were
estimated from the baseline data. The dropout pattern in this
study was found to be described best by a progression rate
dependent hazard function and with final estimates of 1.68 for
the baseline hazard and 0.65 for the effect of the progression
rate on the dropout hazard.

The longitudinal IRT model describes the change in cogni-
tive disability over time. Cognitive disability, in this case, is unitless

Fig. 1 Example of a diagnostic plot for the “ideational praxis” component comparing the IRT model fit (black line) to the fit of generalized additive model (GAM)
with cross-validated cubic spline as a smoothing function (dark red line with 95% confidence interval in light red).

Fig. 2 Comparison of observed (dark red) and simulated (grey) fraction of
subjects failing a certain tasks of the “ideational praxis” component as an
example of a simulation based diagnostic. The grey shading visualizes the
variability from the 100 repetitions of the simulations.
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and on the Z-score scale. To ease its interpretation, simula-
tions were used to translate the estimates to the more familiar
total ADAS-cog scale (the “measurable variable”) and are
shown in Fig. 5a. Based on those simulations, the mean
baseline ADAS-cog score was predicted to be 22.7 points
(95% confidence interval: [21.7; 23.4]) and the mean yearly
increase to be 4.3 points for this population (95% confidence
interval: [3.7; 4.9]). These values were in good agreement with
the results reported in the study report of this trial (22.5 points
and 4.1 points per year) (14).

An appreciation of the data description quality for the joint
longitudinal IRT model can be gained from Fig. 5a and b
displaying various facets of the observed data in comparison
with model simulations. In the top panel of Fig. 5a, simulated
item responses are summed back to the total score and com-
pared to the observed total ADAS-cog. The observed ADAS-
cog scores from all individuals are summarized by the median,
the 2.5th and the 97.5th percentile and compared to the
corresponding 95% confidence intervals from the model. For
both the outer percentiles, observations and model simulations

are in very good agreement for most of the time points. Only at
the 2nd and 4th visits the observed 97.5th percentile is slightly
above the confidence interval from the simulations. The ob-
served median is contained in the 95% confidence interval
from the simulations for all but the final visit.

The performance of the dropout model is illustrated in the
lower panel of Fig. 5a. Observations and simulations were in
good agreement.

The three rows of panels in Fig. 5b contrast model predict-
ed and observed item responses and demonstrate the inherent
level of detail available through the longitudinal IRT model.
For a selection of three components, each panel shows the
fraction of subjects in the study that failed the specified task
(row 1), did not recall the specified number of words (row 2) or
were put in a certain category (row 3). In most item level
comparisons (remaining components available in the electron-
ic Supplementary Material C), the observed fraction and the
95% confidence interval from the simulations corresponded
well with each other. Only some items of the “Naming” and
“Spoken Language” components were less well predicted.

Fig. 3 Item characteristic curves (ICCs) for the different items of the ADAS-cog assessment, describing the probability to fail a specific task (first row), the
percentage of forgotten words (second row, first three panels), the percentage of points not scores in the number cancellation test (second row, last panel) and the
probability of being assigned to a certain category (third row) for a subject with a given disability. Cognitive disability represents a Z-score relative to the estimation
data, i.e., a value of 1 indicates a score which is −1 standard deviation lower than the mean of the original data.
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Fig. 4 Information content for the different items of the ADAS-cog assessment versus cognitive disability. Assessment components are represented as separate
panels, each line corresponds to an item. A task with a higher information value will determine a subject’s cognitive disability more precisely. The shaded areas
indicate the cognitive disability interval containing 95% of the subject in a mild cognitively impaired (MCI) (pink) and a mild AD (purple) patient population.

Table II Ranking of Test
Components by Information
Content in a Mild Cognitively
Impaired (MCI) and in a Mild AD
Patient Population

MCI population Mild AD population

Component Information % Total Component Information % Total

1 Delayed word recall 4.82 30.1% Orientation 5.01 23.3%

2 Word recall 4.10 25.6% Word recall 4.16 19.4%

3 Orientation 2.02 12.6% Delayed word recall 3.34 15.6%

4 Word recognition 1.91 12.0% Naming objects & fingers 2.86 13.3%

5 Naming objects & fingers 1.10 6.9% Word recognition 1.38 6.4%

6 Number cancellation 0.40 2.5% Ideational praxis 0.93 4.3%

7 Construction 0.34 2.1% Number cancellation 0.87 4.0%

8 Word finding 0.29 1.8% Construction 0.58 2.7%

9 Remembering 0.25 1.5% Commands 0.56 2.6%

10 Comprehension 0.21 1.3% Remembering 0.48 2.2%

11 Ideational praxis 0.20 1.3% Comprehension 0.44 2.1%

12 Spoken language 0.13 0.8% Word finding 0.41 1.9%

13 Commands 0.12 0.8% Spoken language 0.33 1.5%
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Fig. 5 (a) Comparisons between observed data and data simulated from the longitudinal IRTmodel for the total ADAS-cog score and the study dropout. Data derived
quantities are dark red and themodel simulated 95% confidence interval grey. (b) Comparison of observed (red lines) and model simulated 95% confidence interval for
the fraction of subjects over time that failed a specific task (first row), forgot a certain number of words (second row) or were assigned to a specific category (third row).
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Increasing Drug Effect Detection Power

Based on a simulated dataset from the longitudinal IRT
model, a pharmacometric total ADAS-cog score model was
built (described in the online SupplementaryMaterial D). The
final pharmacometric total ADAS-cog score model was com-
pared with a LS-means analysis and the longitudinal IRT
model for their ability to detect a drug effect.

The lower panel of Fig. 6 shows the power to detect a drug
effect with the three different data analysis methods.
Compared to the LS-means analysis both pharmacometric
methods provide considerably higher power, with the IRT
based method highest amongst the three. More specifically, in
order to achieve 80% power the IRT based model requires
71% fewer subjects than the LS-means analysis and 23%
fewer subjects than the pharmacometric summary score
model.

The upper panel of Fig. 6 displays the type I error under
the different methods and compares it to the nominal level of
5%. No significant type I error inflation was observed.

DISCUSSION

This work explored the potential to improve utilization of
cognitive assessment data collected in the ADAS-cog assess-
ment through a combination of IRT and pharmacometric
modeling. The potential benefits were studied through four
hypotheses focusing on different challenges encountered dur-
ing the collection and analysis of cognitive data.

One of those challenges is the existence of different ADAS-
cog assessment variants due to slight modifications in the set of
test components performed in a particular study. Clinical trial
databases like CAMD, which collect a diverse set of studies
with different patient populations and study protocols, pro-
vide a realistic overview of the diversity in ADAS-cog assess-
ments encountered in practice. In this work, four slightly
different versions of the ADAS-cog assessment were encoun-
tered in the eight studies included in the analysis.
Traditionally, a joint analysis of these studies is complicated
and requires normalization or a recalculation of the total
ADAS-cog score. Alternatively, the IRT methodology inter-
prets each assessment item as a surrogate measure for cognitive
disability and allows pooling of the complete set of patient
responses in a unified analysis. As such, IRT provides an ideal
framework for a joint analysis of clinical studies by offering
mechanisms to bridge between different ADAS-cog variants,
allowing translation of the results from one assessment variant
to another. In the same manner, other completely separate
cognitive measures could eventually be mapped onto the
cognitive disability continuum.

Though sufficiently large in size, the baseline dataset (eight
studies) mainly consists of mild to moderate AD patients. It

would be beneficial to extend this work by including data from
more and less severely impaired patients.

As clinical trials move into earlier stages of AD, the iden-
tification of the most informative ADAS-cog item subset for a
particular patient population has become a common chal-
lenge. Usually, these modifications are performed in a heuris-
tic manner. In contrast, a quantitative approach, as presented
in this work, provides a more objective method for item
selection that agrees well with findings reported by others.

Fig. 6 Type I error and power to detect a drug effect versus total number of
subjects for a least-square means analysis, a pharmacometric total ADAS-cog
score analysis and a pharmacometric IRT analysis (vertical lines indicate the
95% confidence interval for type I error/power).
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The component ranking reported here for the MCI popula-
tion (Table II) differ only slightly from those identified by
Hannesdottir et al. with the Pro-ADAS assessment
(Unpublished data, presented by Kristin Hannesdottir, Sr.
Clinical Research Scientist and Pär Karlsson, Statistical
Science Director, on behalf of the Cognition group at
AstraZeneca, to the Coalition Against Major Diseases
Meeting, April 13th, 2012) , a proposed subset of the
ADAS-cog for prodromal AD, selected as being the most
sensitive to change over time based on the ADNI dataset.
The authors suggest using the following components to eval-
uate prodromal AD patients: “Word Recall”, “DelayedWord
Recall”, “Orientation”, “Word Finding” and “Number
Cancellation”. With the calculations done in this work, these
components are ranked 1 to 3, 6 and 8. One reason for this
divergence might be the extended data source used in this
analysis. Another reason is a conceptual difference in the way
the different components are modeled and how the informa-
tion content is calculated. A possible limitation of the ap-
proach presented here is the influence of model
misspecifications.

The pharmacometric IRT model also proved to be a
powerful tool for the description of longitudinal clinical trial
data. With a relatively simplistic longitudinal component, the
combined model was capable of replicating the observed
dynamics both for the total score and on the item level. The
approach does not require any transformation to handle the
bounded nature of the total score and constitutes a parsimo-
nious description of the raw data. Furthermore, using the
previously estimated ICCs provides a simple yet effective
way to integrate knowledge available in clinical trial databases
into the analysis of a trial. An alternative to fixing the ICC
parameter to their previously estimated values is estimating
them from the clinical trial data but including an informative
prior to represent knowledge from previous trials.

Application of the longitudinal IRT model in a simulation
study resulted in a large increase in drug effect detection
power from a LS means analysis without inflating the
type I error. In the situation of no dropout, this analysis
is equivalent to the mixed-effect model repeated mea-
sures approach (MMRM). The longitudinal IRT model
also significantly outperformed the pharmacometric total
ADAS-cog score model, highlighting that the observed
increase in power from the classical analysis is not
merely a consequence of the use of longitudinal information,
but is also a result of the implicit weighing of information
occurring in the IRT based analysis.

The results of the power comparison should be interpreted
with caution as they favor the IRT model, which is both data
generating and one of the analysis models. However, the
increased sensitivity of an IRT over a total ADAS-cog score
model is in line with the findings of Balsis et al. (3) and an
increase in power of similar magnitude when using a

pharmacometric model instead of classical statistical analysis
has been shown by Karlsson et al. (20). Furthermore, it should
be noted that patient dropout in combination with common
data imputation schemes, such as last observation carried
forward, will further decrease the probability to detect a drug
effect with the LS means analysis, but affect the
pharmacometric analyses to a much lesser degree. From this
perspective, the comparisons between pharmacometric and
traditional analysis shown here could even be considered
conservative. The potential savings in the number of individ-
uals becomes even more appealing assuming an average per
patient cost of $100 K to $150 K per patient enrolled in an
18 month disease modification trials (including imaging and
bio-analytical costs).

Unsatisfactory or unclear results in recent large drug de-
velopment programs in mild to moderate AD patients, and an
increasing focus on early treatment of AD have created a need
for better ways to detect changes in cognition for patients early
in the disease process. Often, this discussion is focused on
defining a fixed sensitive test for the population to be studied.
The need to define this test a priori is largely driven by the need
to have an acceptable test for regulators, where the test char-
acteristics have been well established, or for the need for
comparison amongst trials or programs. Such an approach
may fail to acknowledge the dynamic and continuous nature
of cognitive ability. Even within a group ofMCI patients there
is tremendous variability in cognitive ability, and the most
sensitive assessment might change markedly during the course
of a 2–4 year early AD clinical trial (and the subsequent open
label extension).

The framework presented in this work is based on a con-
tinuous and dynamic understanding of cognition, allows for
the use of different existing instruments to assess cognition,
and provides a method to choose the most sensitive among the
available instruments to utilize the full information available
in the assessment data. The IRT framework allows the large
body of data from diverse sources and variants of the ADAS-
cog already available to be fully utilized and mapped to
cognitive disability, allowing operating characteristics of any item
subsets to be known, in order to meet the regulatory rigors
required for qualifying new assessment tools. It also allows
present, emerging and future tests to be mapped and
compared, to extend the concept of “a common cognitive
assessment, using different instruments”. The methodology
could easily be expanded to tests that are commonly
used in practice that contain cognitive components, such
as the mini mental state examination (MMSE), thus
linking clinical practice and research measures into one
continuous assessment of the patient. The basic concepts
described in this work are also directly applicable to
measures for other progressive diseases with a clinical
endpoint utilizing aggregated scores such as Parkinson’s or
rheumatoid arthritis.
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CONCLUSION

ADAS-cog data can be more effectively and precisely
analyzed by combining IRT and pharmacometric
modeling. The joint framework permits the combination
of assessment variants in a common analysis, the selec-
tion of informative test components in a quantitative
manner, a closer description of clinical trial data, and,
finally, a higher power for identification of drug effects
compared to traditional methods. This improved utiliza-
tion of ADAS-cog score data with IRT and pharmacometric
models increases the value of this common assessment and
facilitates the integration with novel cognitive outcome
measures.
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